207 research outputs found

    Two Forms of Inconsistency in Quantum Foundations

    Get PDF
    Recently, there has been some discussion of how Dutch Book arguments might be used to demonstrate the rational incoherence of certain hidden variable models of quantum theory (Feintzeig and Fletcher 2017). In this paper, we argue that the 'form of inconsistency' underlying this alleged irrationality is deeply and comprehensively related to the more familiar 'inconsistency' phenomenon of contextuality. Our main result is that the hierarchy of contextuality due to Abramsky and Brandenburger (2011) corresponds to a hierarchy of additivity/convexity-violations which yields formal Dutch Books of different strengths. We then use this result to provide a partial assessment of whether these formal Dutch Books can be interpreted normatively.Comment: 26 pages, 5 figure

    Recovering Recovery: On the relationship between gauge symmetry and Trautman Recovery

    Get PDF
    This paper (i) uncovers a foundational relationship between the `gauge symmetry' of a Newton-Cartan theory and the celebrated Trautman Recovery Theorem; and (ii) explores its implications for recent philosophical work on Newton-Cartan gravitation

    Recovering Recovery: On the relationship between gauge symmetry and Trautman Recovery

    Get PDF
    This paper (i) uncovers a foundational relationship between the `gauge symmetry' of a Newton-Cartan theory and the celebrated Trautman Recovery Theorem; and (ii) explores its implications for recent philosophical work on Newton-Cartan gravitation

    The Teleparallel Equivalent of Newton-Cartan Gravity

    Get PDF
    We construct a notion of teleparallelization for Newton-Cartan theory, and show that the teleparallel equivalent of this theory is Newtonian gravity; furthermore, we show that this result is consistent with teleparallelization in general relativity, and can be obtained by null-reducing the teleparallel equivalent of a five-dimensional gravitational wave solution. This work thus strengthens substantially the connections between four theories: Newton-Cartan theory, Newtonian gravitation theory, general relativity, and teleparallel gravity

    The Teleparallel Equivalent of Newton-Cartan Gravity

    Full text link
    We construct a notion of teleparallelization for Newton-Cartan theory, and show that the teleparallel equivalent of this theory is Newtonian gravity; furthermore, we show that this result is consistent with teleparallelization in general relativity, and can be obtained by null-reducing the teleparallel equivalent of a five-dimensional gravitational wave solution. This work thus strengthens substantially the connections between four theories: Newton-Cartan theory, Newtonian gravitation theory, general relativity, and teleparallel gravity.Comment: 7 pages, forthcoming in Classical and Quantum Gravity (letters

    Weighted Fair Division with Matroid-Rank Valuations: Monotonicity and Strategyproofness

    Full text link
    We study the problem of fairly allocating indivisible goods to agents with weights corresponding to their entitlements. Previous work has shown that, when agents have binary additive valuations, the maximum weighted Nash welfare rule is resource-, population-, and weight-monotone, satisfies group-strategyproofness, and can be implemented in polynomial time. We generalize these results to the class of weighted additive welfarist rules with concave functions and agents with matroid-rank (also known as binary submodular) valuations.Comment: Appears in the 16th International Symposium on Algorithmic Game Theory (SAGT), 202

    The Teleparallel Equivalent of Newton-Cartan Gravity

    Get PDF
    We construct a notion of teleparallelization for Newton-Cartan theory, and show that the teleparallel equivalent of this theory is Newtonian gravity; furthermore, we show that this result is consistent with teleparallelization in general relativity, and can be obtained by null-reducing the teleparallel equivalent of a five-dimensional gravitational wave solution. This work thus strengthens substantially the connections between four theories: Newton-Cartan theory, Newtonian gravitation theory, general relativity, and teleparallel gravity

    Abandoning Galileo's Ship: The quest for non-relational empirical significance

    Get PDF
    The recent debate about whether gauge symmetries can be empirically significant has focused on the possibility of 'Galileo's ship' types of scenarios, where the symmetries effect relational differences between a subsystem and the environment. However, it has gone largely unremarked that apart from such Galileo's ship scenarios, Greaves and Wallace (2014) proposed that gauge transformations can also be empirically significant in a 'non-relational' manner that is analogous to a Faraday-cage scenario, where the subsystem symmetry is related to a change in a charged boundary state. In this paper, we investigate the question of whether such non-relational scenarios are possible for gauge theories. Remarkably, the answer to this question turns out to be closely related to a foundational puzzle that has driven a host of recent developments at the frontiers of theoretical physics. By drawing on these recent developments, we show that a very natural way of elaborating on Greaves and Wallace's claim of non-relational empirical significance for gauge symmetry is incoherent. However, we also argue that much of what they suggest is correct in spirit: one can indeed construct non-relational models of the kind they sketch, albeit ones where the empirical significance is not witnessed by a gauge symmetry but instead by a superficially similar boundary symmetry. Furthermore, the latter casts doubt on whether one really abandons Galileo's ship in such scenarios

    Settling the Score: Portioning with Cardinal Preferences

    Full text link
    We study a portioning setting in which a public resource such as time or money is to be divided among a given set of candidates, and each agent proposes a division of the resource. We consider two families of aggregation rules for this setting - those based on coordinate-wise aggregation and those that optimize some notion of welfare - as well as the recently proposed Independent Markets mechanism. We provide a detailed analysis of these rules from an axiomatic perspective, both for classic axioms, such as strategyproofness and Pareto optimality, and for novel axioms, which aim to capture proportionality in this setting. Our results indicate that a simple rule that computes the average of all proposals satisfies many of our axioms, including some that are violated by more sophisticated rules.Comment: Appears in the 26th European Conference on Artificial Intelligence (ECAI), 202
    • …
    corecore